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The paper introduces the basics of the multilevel selection theory of
David Sloan Wilson from the perspective of pedagogy. It endorses a simple
approach in teaching mathematical models to anthropology students, which
is through the "black box-tinkering" approach using an interactive learning
material (ILM) that we have developed for the topic. The core of the theory
of multilevel selection, used in both anthropology and evolutionary biology,
involves the use of algebraic equations in formalizing a simplified
population model of two types of behaviors/phenotypes (labeled "altruists"
and "selfish"), predicting their generational frequencies when selectional
forces operate, and, more importantly, investigating possible pattern
differences of selectional forces operating at the individual and group
levels. Teaching-wise, the repeated computations needed to illustrate the
numerical results are time-consuming, tedious, and divert class-time from
directly going into the core of the theory's arguments. Using a simple
Microsoft Excel-based ILM, we illustrate the principle of learning by
tinkering in the use of ILMs. Only after student-users have seen patterns
from input-output tinkering will the model's transformation rules (the
equations) be conceptually unpacked for the explication of its assumptions,
limits and logic. The pedagogical challenge, addressed here by the
presented ILM, is in maximizing the use of the key equations while
bypassing the tedious crunching of numbers by manual computations.
While quite simple, we believe that this pedagogical approach in teaching
mathematical models to anthropology students highlight the challenge of
designing ILMs that widen the user's tinkering and programming latitude.
The challenge to ILM-developers and anthropology teachers is how to
translate into ILMs (with expanded tinker-features) the growing number of
anthropological theories using complex mathematical models.
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In the most fundamental sense, we, as learners, are all bricoleurs.
[Seymour Papert]
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What is the best approach in teaching mathematical models to
anthropology/social science students? Why even teach such at all? Why
make formal mathematical models in anthropological theorizing? The last
two questions deserve a separate paper for itself. But assuming the
importance of formal modeling in anthropology/social sciences, we present
here one possible approach in handling such kind of models. We will focus
on one specific topic, the multilevel selection theory (Wilson, 1989, 1998;
see also Gould, 2002), as an example of a simple mathematical model
illustrating our "black-box tinkering" approach. In the process, we hope (1)
to illustrate the pedagogical style that could guide other ILM-construction
concepts, and (2) to introduce the basics of the multilevel selection model
using the ILM we have constructed.

What is the theory about?
The theory is situated in the long argument within evolutionary biology as to
the "unit/s" of which the forces of natural selection are acting upon: more
specific, on whether or not it is meaningful to talk of "group adaptation" as a
result of "group selection," and not only of individual selections. Assuming
that a population of existing variants, with mechanisms for reproduction,
would logically result in differing reproductive successes (the core concept
of "natural selection"), how does one know whether a certain observed
adaptive feature is a result of individual- or group-level selectional
processes? The multilevel model presents a method to deal with the question:
It partitions the analytical steps into within-group and between-group
selectional dynamics so as to know when to say that group-selection is going
on.

The core of the theory of multilevel selection involves the use of
algebraic equations in modeling selectional forces acting on two posited
phenotypic-genotypic types, labeled the "altruists" and the "selfish" types.
(Wilson [1998] presented a more elaborate extension of the model to handle
situations wherein phenotypic types are not assumed to directly connect with
genotypic variations.) What will happen to the proportion of these types after
repeated selections? Are the patterns the same at all levels: that is to say, are
the forces acting at the level of individual-to-individual interactions the same
as the forces acting at the group-level interactions? The set of equations are
fed varying combinations of values to get some illustrative results.
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Here are the five key equations used by Wilson (1989):
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Where:
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WA

Ws
N'
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P'

initial population
proportion of A-type individuals
proportion of S-type individuals
number of offspring in the absence of altruistic behavior
additional number of offspring due to altruism
loss due to altruism
fitness of A-individual (average number of offspring per A­
individual)
fitness of S-individual (average number of offspring per S­
individual)
total population at the second generation
the proportion of A-type individuals at the second
generation
the global proportion of A-type individuals at the second
generation

And below are our modifications of above equations to handle multiple
groups and multiple generations:
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N(I+l) = N(I) L(t)W(') + (1- p(t»)W(I»)
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N(I+l)p(t+l) + N(I+l)p(I+I) + ... + N(I+l)p(I+I)
p(t+I) = I 1 2 2 k k
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for i = 1,2, ... , k and t = 1,2, ...

[8]
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Where:
X
B

W(I)
A,i

W.(I)
S,i

N(I+I)
I

p(I+I)
I

number of offspring in the absence of altruistic behavior
additional number of offspring due to altruism
loss due to altruism

population of group i at generation t

proportion of A-type individuals in group i at
generation t

proportion of S-type individuals in group i at generation
t
fitness of A-individual in group i at generation t

(average number of offspring per A-individual in group
i at generation t)
fitness of S-individual in group i at generation t
(average number ofoffspring per S-individual in group
i at generation t)

population of group i at generation 1+1

the global proportion of A-type individuals at
generation t+1

Where ILMs are crucial
Teaching-wise, these repeated computations, done by either chalkboard
works or paper seatwork for students, are time-consuming, tedious, and
diverts class-time from directly going into the core ofthe theory's arguments.
Performing twice or thrice the numerical computations give the students a
needed "feel for the equations," but repeatedly doing it to look for illustrative
patterns does not anymore add I-bit of understanding, aside from punishing
students by doing boring computations. Such task must be assigned to
automatic processes of ILMs.
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The pedagogical challenge, therefore, is to maximize the use of the key
equations but to escape the tedious crunching of numbers by manual
computations. This is where the use of ILM is crucial, if not a necessity.
Using a simple Microsoft Excel-based Multilevel Selection-Il.M (MS-ILM),l
which programs iteratively the Wilson equations, both the instructor and the
students could maximize time in deriving important principles from the
model's equations. The Screen Shots Section at the end of this paper (Screen
Shot [7]) provides the assumptions and notations of the above equations [1]­
[5].

As given in equations [6] to [10], the MS-ILM expands the number of
groups (from the two groups of Wilson's article to four) and levels (from two
to three) and allows iteration into the 5th generation/selectional time (only 1SI

and 2nd generation in Wilson's). In this way, students observe more patterns
(e.g., downward frequency of altruists in the 1st selection recovers on the
succeeding cycles, showing the importance of observing long-term trends)
than given in the article of Wilson's.

Tinker with the "black box"
The educational theorist Seymour Papert (1980), who pioneered the
interactive use of computers in educational context, emphasizes the
importance of tinkering and programming in computer-assisted instructional
tools. Working within the limits of the specific learning objectives we set
here (that is, to explicate the key ideas of multilevel selection), we believe we
are working within the same principles advocated by Papert.

The MS-ILM has two kinds of input boxes (see Screen Shot [1] and [3])
that the user can interact with by putting different values and observing the
resulting output in tables and plots. By taking a "black box" approach in
teaching the model, student-users are given an ILM tool to tinker with and to
observe the transformative powers of equations when fed with differing
values: letting them observe input patterns shape output results. Only later, as
a result of the observed patterns (is simple presence Of variations driving

'The interactive learning material (ILM) presented in the paper is part of the working
models for the UP-funded Game Theory Learning Objects that Dr. Norberto R.
Navarrete (Department of Mathematics and Computer Sciences, CSM) and the
present author are working on. We are also in the process of improving our model
for Extended Hawk-Dove Games ILM and in the preliminary conceptualization­
design of other game models (e.g., Coordination Game ILM used by the
anthropologist 1. Stephen Lansing [2005] in the Balinese agricultural system
context). As draft materials, they can readily be requested for copying; each
worksheet in the materials, however, is password-protected to shield the embedded
functions. Comments for these materials, philosophical/pedagogical-wise, are
welcome.
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some values or is it the degree of variations?; how will variations of group
characteristics interact with population size in shaping outcomes?, etc.), are
students made to "open the black box" and made to understand the equations:
how they are constructed (algebra as both a descriptive and analytical
language), the underlying assumptions, and the limits/potentials of
formalized models.

Feeling the math
In my [MJP) own experience of teaching the model, through an assigned
reading of Wilson's article (1989), I found out that anthropology students
think it more "fun" if they are just made to see differing results through their
own tinkering with varied values for each of the given parameters in the MS­
ILM. There seems to be "magic" in the hidden mathematical equations and
the way it generates non-intuitive results (the second level values "went up"
while those of the first level groups "went down" (Screen Shots [1) and [4D.
Then, once they "get used to" the outcome predicted by the model or they
discover some patterns (e.g., variance between groups is a major factor in
driving up the p at the group level) they could then move on to inquire about
the equations underlying the ILM, and the class can then proceed to making
sense of the model in real-world terms. This is where the instructor enters
with the traditional discursive explication of the model's logic. I also gave
assignments, before letting them use the MS-ILM, for students to do the
manual solving for some givens (two, three groups; varied values for each
students for [N), [X), [b), [cD to have them a feel for the mathematics of the
model. As a by-product, the MS-ILM, like a calculator, is also handy in
checking their papers.

The point of "doing math," by minimal traditional manual computation
steps and by maximal use of mediating ILMs, is to "feel the game" of
mathematical modeling and to have the cognitive experience of the
transformative process acted by the equations. One then does not simply
discuss the resulting conceptual results of the theory's math, which can be
done by verbal ways, but discuss the meaning of the equations lying at the
theory's core. This elementary exercise is important in view of the long-term
goal of this style of analytic method: to learn the skill of constructing the
equations themselves as a modeling language.

While quite simple and very elementary, we believe that the presented
concept in teaching mathematical model to anthropology students highlight
the pedagogical challenge of constructing ILMs that widen the user's
tinkering and programming latitude. By taking advantage of programmable
softwares, the challenge to ILM-developers and anthropology teachers is
how to translate into Papert-inspired ILMs (one with expanded tinker-
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features) the growing number of anthropological and behavioral theories and
models using formal mathematical approaches (aside from DS Wilson's, see
the works of, and relevant references in, Boyd and Richerson, 1985; also,
Dugatkin and Reeve, 1998, and cited references therein; and Lansing, 2005,
and cited references).

Pidgin for interdisciplinary transactions
Whether or not the anthropology teacher's philosophy is appreciative of
formal mathematical modeling directions, it is imperative for the instructor to
expose our students to a sample of this kind in the field. Learning
mathematical modeling is a language that we, and our students, could use as
one pathway in interdisciplinary transactions with the diverse evolutionary
and biological sciences. In this mode of knowing, our theoretical,
methodological and analytical toolkit would be greatly expanded.
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